Quality Assurance Project Plan For Red River Basin River Watch Program

Prepared for:

Schools, Citizens, and Volunteers conducting River Watch monitoring in the Red River Basin Agency personnel assisting with River Watch monitoring in the Red River Basin Entities utilizing data generated from the River Watch Program

Prepared by:

Wayne Goeken, Monitoring Coordinator-Red River Watershed Management Board Danni Halvorson, Monitoring Specialist-Red River Watershed Management Board Corey Hanson-Water Quality Specialist-Red Lake River Watershed District

This quality assurance project plan (QAPP) has been prepared to ensure that environmental and related data collected, compiled, and/or generated for this program/project are complete, accurate, and of the type, quantity, and quality required for their intended use. The work conducted will be in conformance with the *Standard Operating Procedures for Water Quality Monitoring in the Red River Watershed* (Red Lake Watershed District, October 24, 2003), the *Red River Basin Water Quality Monitoring Volunteer Manual* (River Keepers 2004) and with the procedures described in this QAPP.

Approvals:

Wayne Goeken Date Corey Hanson Date Monitoring Coordinator, RRWMB Water Quality Coordinator, Red Lake Watershed District Erskine, MN 56535 Thief River Falls, MN 56701 Date Joe Courneya Date Bruce Paakh Director, Center for Watershed Education Red River Basin Monitoring Coordinator, MPCA Fargo, ND 58105 Detroit Lakes, MN 56501 Adopted: Amended:

Funded by:

Minnesota Board of Soil and Water Resources Challenge Grant for the Red River Watershed Assessment Protocol Project, Red River Watershed Management Board, and Red Lake Watershed District.

TABLE OF	CONTENTS
-----------------	----------

	of Ta of Fi		i i
List	of Aj	opendices on List	i ii
	A1	ect Management Project/Task Organization	1
		Background/Problem Definition	1
		Project Description	2 3 5
		Data Quality Objectives for Measurement Data	3
	A5 A6	Training Documentation and Records	5
B –	Mea	surement/Data Acquisition	
	B1	Sampling Process Design	7
	B2	Sampling Methods	7
	B3	Sample Handling and Custody	8
	B4	Analytical Methods	8
	B5	Quality Control	8
	B6 D7	Instrument/Equipment Testing, Inspection, and Maintenance	9
	B7 B8	Instrument Calibration and Frequency Inspection/Acceptance of Supplies and Consumables	9 9
	B9	Data Acquisition Requirements (Non-direct Measurements)	9
		Data Management	10
C -	Asse	ssment and Oversight	
	C1	Assessment and Response Actions	10
	C2	Reports	11
		Validation and Usability	
		Data Review, Verification, and Validation	11
		Data Usability Reconciliation with Data Quality Objectives	11 11
	D3	Reconcination with Data Quanty Objectives	11
		LIST OF TABLES	
1.	Preci	sion, Measurement Range, Accuracy, and Resolution for River Watch Program	5
		APPENDICES	
A.	River	Watch Sampling Sites - Table	12

1.	111101	water sampling sites Table	14
	A1.	Schools/Communities Involved in River Watch – 2004 (map)	16
	A2.	River Watch Sampling Site Distribution in Red River Basin – 2004 (map)	17

DISTRIBUTION LIST

Name	Affiliation/Role	Address	Phone	Email
	Monitoring Advisory Con		Thome	
Wayne Goeken	RRWMB-Monitoring	40048 160 th Ave SE	218-574-2622	wrg@gvtel.com
wayne Goeken	Coordinator	Erskine, MN 56535	210-374-2022	wig@gviel.com
Danni	RRWMB-Monitoring	23493 155th Avenue NW	218-523-6171	dannihalvorson@wiktel.
Halvorson	Specialist	Viking, MN 56760		com
Bruce Paakh	MPCA-QC Supervisor	714 Lake Ave. Suite 220 Detroit Lakes, MN 56501	218-846-0747	bruce.paakh@pca.state. mn.us
Dan Wilkens	Sand Hill Watershed District-RRBMAC	200 West Main Fertile, MN 56540	218-945-6529	shrwd@gvtel.com
Jim Ziegler	MPCA-Program Director	714 Lake Ave. Suite 220 Detroit Lakes, MN 56501	218-847-1519	james.ziegler@pca.sta te.mn.us
Brian Dwight	Minnesota Board of Water & Soil Resources	3217 Bemidji Avenue North Bemidji, MN 56601	(218) 755-3963	brian.dwight@bwsr.state .mn.us
Tom Groshens	MN DNR Fisheries		(218)-755-4488	tom.groshens@dnr.state. mn.us
Dan Money	Two Rivers Watershed District Administrator	P.O. Box 5 Hallock, MN 56728	218-843-3333	daniel.money@mn.usda. gov
Corey Hanson	Red Lake Watershed District-Water Quality Coordinator	P.O. Box 803 Thief River Falls, MN 56701	218-681-5800	coreyh@wiktel.com
Darrell Schindler	Red Lake DNR-Water Quality Coordinator		218-679-3959	dschindl@paulbunyan.ne t
Lisa Botnen	Energy &Environmental Research Center- Research Scientist	University of North Dakota 15 North 23rd Street Grand Forks, ND 58202	701-777-5144	lbotnen@undeerc.org
Charles Fritz	Red River Basin Institute-Director		701-231-9747	Charles.Fritz@ndsu.nod ak.edu
Joe Courneya	Red River Center for Watershed Education- Director	219 FLC Box 5016 Fargo ND 58105-5016	701-231-6184	jcourney@ndsuext.noda k.edu
Teachers/Citizen	s Coordinating River Wat	tch Programs in Schools/Comm	nunities	
Cathy Dickey	Clearbrook/Gon-vick High School-RW advisor	PO Box 8 Elm St. Clearbrook, MN 56634	218-776-3112 218-968-2381	cldickey32@hotmail.co m
Spencer Oland	Lafayette High School (RL Falls)	PO Box 399 Red Lake Falls, MN 56750	218-253-2163 218-253-4664	soland@redlakefalls.k12 .mn.us
Steve Strutz	Red Lake County Central High School- RW advisor	100 Government St. Oklee, MN 56742	218-796-5136 218-681-3724	sstrutz@oklee.org
Tim Mostrom	Grygla-Gatzke High School-RW advisor	Fladeland Ave. Grglya, MN 56727	218-294-6155 218-294-6301	tim_mostrom@mail.gryg la.k12.mn.us
Kristen	Fosston High School-	301 1 st St. E.	218-435-1909	peterson@fosston.k12.m
Pederson	RW advisor	Fosston, MN 56542	218-435-6008	n.us
Bob Nephew	Win-E-Mac High	23130 345 St. SE	218-687-2236	rnephew@host1.win-e-
	School-RW advisor	Erskine, MN 56535	218-687-4521	mac.k12.mn.us
Pat Hurley	East Grand Forks Public High-RW advisor	1420 4th Ave NW East Grand Forks 56721	218-773-3494	phurley@egf.k12.mn.us
Mike Marek	East Grand Forks Sacred Heart	200 3rd St NW East Grand Forks 56721	218-773-0877	mmarek@sacredheartegf .net
Greg Garmen/	Crookston High School-	420 Fisher Ave	218-281-2144	jzehrer@crookston.k12.
0	0			, 0

Jessica Hanson	RW advisor	Crookston 56716		mn.us
Karri Basler	Fisher High School-RW	313 Park Ave	218-891-4905	
	advisor	Fisher 56723		
Nathan	Red Lake High School-	Hwy 1 North	218-679-3733	nathana@redlake.k12.m
Anderson/	RW advisors	Red Lake 56671		n.us
Karen Good				
Ann Dalbey	Lancaster HS RW advisor		218-762-5400	ADalbey@lancaster.k12. mn.us
Mark Gerhls	Kittson Co. Central HS		218-843-3682	mgehrls@kittson.k12.mn
	RW advisor		Ext.240	.us
	Roseau HS RW advisor			
Jim Pederson	Marshall Co. Central HS RW advisor		218-874-7225	jimpeder@newfolden.k1 2.mn.us
Kevin Johnson	Warren HS RW advisor		218-745-4646	kjohnson@wao.k12.mn. us
Julie Reitmeier	Fertile RW advisor		218-945-3399	brookhaven@gvtel.com
Karen Thoreson	Climax RW advisor		218-857-2810	kthoreson@climax.k12. mn.us
Randy	Norman Co. West RW			rzimmerman@ncw.k12.
Zimmerman	advisor			mn.us
Dale Erickson	Mahnomen HS RW advisor		218-935-2211	derickson50@hotmail.co m
Nathan	Ada HS RW advisor			NATHANP@ada.k12.m
Purrington		·		n.us
Danielle Differding	Hawley HS RW advisor		218-483-3666	ddifferding@hawley.k12 .mn.us
Sheila Carlson	Barnesville HS RW advisor		218-354-2228	skc@rrt.net
Dave	Campbell HS RW		218-630-5311	himmelspachd@campbel
Himmelspach	advisor		-	l.k12.mn.us
Tim Frew	Wheaton HS RW advisor		320-563-8282	tfrew@wheaton.k12.mn. us
Matyas Sundim	Herman HS RW advisor		320-677-2291	
		•		
	-			
Other Cooperato	ors/Data Users/etc. (Water	shed/SWCD/etc.)		
Jon Roeschlein	Bois De Sioux	1002 Broadway	320-563-4185	bdswd@traversenet.com
	Watershed District-RW coordinator/data user	Wheaton, MN 56296		
Jerry Bennett	Wild Rice Watershed	11 E. 5th Ave.	218-784-5501	wrwd@loretel.net
	District-RW	Ada, MN 56510		
	coordinator/data user			
Bruce Albright	Buffalo-Red Watershed	123 Front St., P.O. Box 341	218-354-7710	brrwd@bvillemn.net
	District-RW	Barnesville, MN 56514		
	coordinator/data user			
Ron Adrian	Middle River Snake	453 N. McKinley St., P.O.	218-745-4741	mrsrwd@ruralaccess.net
	Tamarac WD	Box 154 Warran MN 56762		
Dah Sarah	Administrator	Warren, MN 56762	219 4(2 0212	mund Quan ash 1 - mat
Rob Sando	Roseau River WD	P.O. Box 26	218-463-0313	rrwd@mncable.net

	Administrator	Roseau, MN 56751		
Christine Holland	River Keepers Water Quality Coordinator	325 7th St. S. Fargo, ND 58103	701-235-2895	riverkeepers@i29.net
Dan Driessen	RRBI-Center for Watershed Education Outreach Coordinator		701-780-8229	ddriesse@ndsuext.nodak .edu
Chris Klucas	RRBI-Center for Watershed Education RiverWatch Coordinator	219 FLC Box 5016 Fargo ND 58105-5016	701-231-7252	Christopher.Klucas@nds u.nodak.edu
Janine Lovold	Roseau Co SWCD Water Plan Coordinator	502 7 th St. SW, Suite 8 Roseau, MN 56751	218-463-1903	janine.lovold@mn.nacdn et.net
Tanya Hanson	Red Lake Co SWCD Water Plan Coordinator	2602 Wheat Drive Red Lake Falls, MN 56750	(218) 253-2593	tanya.hanson@mn.nacdn et.net
Gary Lee	E. Polk Co SWCD Water Plan Coordinator	P.O. Box 57 McIntosh, MN 56556	(218) 563-2777	gary.lee@nacdnet.net
Paige Guetter	W. Polk Co SWCD Water Plan Coordinator	528 Strander Avenue Crookston, MN 56716	(218) 281-6070	paige.guetter@mn.nacdn et.net
Jan Kaspari	Marshall/Pennington Co Water Plan Coordinator		(218)-745-4217	jan.kaspari@mn.nacdnet. net
Aaron Neubert	Mahnomen SWCD Water Plan Coordinator	123 W. Monroe Ave., P.O. Box 381 Mahnomen, MN 56557	218-935-2987 Ext. 3	acn@mn.nrcs.usda.gov
Steve Hofstad	Clay Co SWCD Water Plan Coordinator	1506 30th Ave S Suite B Moorhead, MN 56560-5150	218-287-2255	Steve.Hofstad@mn.nacd net.net

A. PROJECT MANAGEMENT

A1. Project/Task Organization

The Red River Watershed Management Board (RRWMB) has been the primary entity responsible for supporting and coordinating the River Watch program in the Red River Basin. RRWMB monitoring staff provides primary coordination and support services to the program including training, equipment coordination, sampling assistance, and assistance with data entry, analysis, and reporting. The Red River Basin Monitoring Advisory Committee (RRBMAC), comprised of various partners involved with water quality monitoring in the Red River Basin (see first section of distribution list above), provides technical assistance and coordination to the River Watch monitoring efforts as well as utilizes the data generated for analysis and decision making. This advisory committee serves as the Quality Control Manager for this project. Lead staff Wayne Goeken of the RRWMB and Bruce Paakh of the MPCA are responsible for maintaining the official, approved Quality Assurance Project Plan.

Staff from several soil and water conservation districts, Red Lake Watershed District, RRWMB, and the Red River Basin Institute's Center for Watershed Education (CWE) generally accompany students and teachers when sampling to provide training and guidance. In the Red Lake River, Sand Hill, Buffalo-Red, and Bois de Sioux watersheds, transportation, substitute teacher, and some equipment expenses are reimbursed to participating schools by their respective watershed district. The Red Lake Watershed District has ten-year contracts with each school in their watershed for this arrangement.

The distribution list on pages i-iii provides a comprehensive list of agency personnel, teachers, and others involved in various capacities as noted above with the River Watch program—from monitoring participants to data users. In addition to those identified, students from participating schools are involved in the monitoring, data management, and reporting. As students are involved their names are recorded for every sample event they participate in as part of the program's permanent records. Due to regular ongoing turnover of students they will not be individually listed in this plan.

A2. <u>Background/Problem Definition</u>

The River Watch program began in the Red River Basin as a pilot project with four schools on the Sand Hill River in1995 with funding from a Minnesota Board of Water and Soil Resources Challenge Grant. At the time the Sand Hill Watershed District had no water quality monitoring program in place and had been frustrated in obtaining needed permits due in part to their lack of water quality data acceptable for permitting agencies' reviews. Developing sound baseline water quality data using scientifically credible methods to help address the District's needs was a primary goal of the River Watch program. Additional goals were to provide hands-on "real world" science opportunities for students, and to promote greater citizen awareness and understanding of watersheds and the role of watershed districts in regional resource management.

Other watershed districts faced similar needs to develop or supplement their monitoring programs to document baseline conditions and/or meet basic monitoring requirements of Flood Damage Reduction/Natural Resource Enhancement (FDR/NRE) projects. The niche filled by the River Watch program is the building of a long-term baseline of sound water quality data while also fulfilling its goals of education and awareness. Sites being monitored are selected to represent a diversity of stream reaches of the vast network of waterways in the Red River Basin, many which will serve as comparative upstream or downstream sites for current or future projects undertaken by watershed districts. River Watch participants can provide additional data at existing agency monitoring sites where needed and can monitor other strategic sites that local agencies have been unable to monitor due to resource constraints.

The main water quality concern in the Red River basin and its tributaries is the tremendous loss of topsoil via wind and water erosion. Sediment being blown into and transported down the basin's waterways is nothing short of an ecological and economic disaster. Costs include loss of valuable topsoil, ditch cleanouts, extra treatment costs to water plant operators, habitat destruction, and recreation impairments to name a few. Sediment also carries with it nutrients, especially phosphorus, which have been a major concern due to the eutrophication of Lake Winnipeg. The network of River Watch sites being monitored and the parameters being assessed including turbidity and dissolved oxygen levels will contribute greatly to an understanding of where to best target limited resources to address these problems.

From its inception with four schools monitoring the Sand Hill River the River Watch program has grown to include 27 schools monitoring over 150 sites on rivers, streams, creeks, and major drainage ditches throughout the Minnesota portion of the Red River Basin as of the 2004 monitoring season. Schools in the North Dakota and Manitoba portions of the basin are also following these proven standard methods as they initiate local monitoring efforts. Support for the program lies in the need for consistent, comparable data throughout the Red River Basin. By following standard operating procedures, providing ongoing training and support, and engaging in working partnerships between schools and resource managers in the Basin, the River Watch program continues to fulfill its goals and contributes to a better understanding of water quality conditions throughout the Red River Basin.

While not currently a regular part of the River Watch program, benthic macroinvertebrate monitoring will be briefly noted here as some River Watch teams are beginning to experiment with this form of biological monitoring. Benthic macroinvertebrate monitoring involves collection and identification of organisms that live on the river bottom, specifically animals without backbones that live at least part of their life cycles in or on the bottom of a body of water. These organisms are indicators of the biological health of rivers and streams. While chemical monitoring provides a "snapshot" of water quality conditions at a particular point in time, macroinvertebrate monitoring can provide a better indication of water quality over a longer period of time as these organisms live in the stream throughout their life cycles. Macroinvertebrate sampling is done near the same locations as the chemical monitoring however only two samples are generally collected per year--in the spring and fall. Biological monitoring is not currently being done due to resource limitations, scheduling difficulties and lack of standard methods and agency support. It is anticipated that biological monitoring will be part of the River Watch program as these difficulties are addressed. More detailed information will be added to this QAPP as this monitoring is further developed.

A3. Project Description

Following is a basic operational overview of the River Watch program.

- Sampling Team: From 6-20 students may comprise a typical school River Watch sampling team. Some schools have set up an application/screening process due to more students desiring to be involved in the program than can be accommodated. Expectations are made clear that students are also to help with summer sampling (realizing some flexibility is needed to accommodate jobs). A mix of students from grades 9-12 is suggested for program continuity and to provide for new students to be trained by experienced students. The program would also work well with citizen volunteers.
- **Sampling Sites:** The number of sites sampled per school primarily depends on the proximity of sites to the school, safe access, and school scheduling flexibility. Schools have monitored from four to sixteen sites per school. Local SWCD and Watershed District personnel take the lead in selecting sites which contribute to a better understanding of a diversity of watershed conditions, complement

existing monitoring programs, or address FDR/NRE project monitoring needs. The school River Watch team, MN DNR, and MPCA also provide input to the site selection process based on their experience and monitoring needs. A complete inventory of monitoring sites including maps and a table of sites are included as Appendix A. The sites have been entered into the STORET data-base where complete site descriptions can be found.

- Sampling Frequency: Sampling generally occurs once a month during open water months of April/May through Oct./Nov.—including summer months. As more equipment becomes available and further training is completed, schools will be able to monitor more frequently as local conditions dictate with a special interest in monitoring immediately following significant rain events.
- Variables being monitored: Students take a standard set of field measurements including air and water temperature, conductivity, dissolved oxygen, pH, turbidity, transparency, river depth, and ratings for appearance, recreation suitability, and stream condition. A Hach 2100P Turbidimeter and a YSI or HydroLab multi-parameter meters and their respective protocols are used for dissolved oxygen, pH, conductivity, and water temperature measurements. A transparency tube is used for transparency readings. General observations are recorded of vegetation, crop status, and other conditions in the watershed that could influence water quality at a given site. Photos are taken of conditions and monitoring activities for documentation and communication purposes.
- Data Management, analysis, and reporting: Students enter their data into a standardized Excel spreadsheet template used by all River Watch participating schools to allow for efficient entry, sharing and analysis of data. Data will be accessible to any public data user at http://www.rrbdin.org/tools/mapviewer/basinviewer.htm. Data will also be available from the EPA's national water quality database, STORET, which is accessible through the MPCA's environmental data access (EDA) website at http://www.pca.state.mn.us/data/eda/index.cfm#monitoring. Teams of students and resource managers perform data analysis. Students prepare an annual summary report and display of their analysis and findings to be shared with their respective local watershed district, soil and water conservation districts, and other interested parties.

A4. Data Quality Objectives for Measurement Data

Assuring consistency of data collection methods over time and among River Watch participants is the primary purpose of this document. The methods used will be consistent with standard methods used by other entities such as state and local government agencies. The accuracy of field parameter measurements will vary somewhat based upon the type of instrument used. For example, YSI sondes may have a different accuracy than Hydrolab sondes. When conducting a monitoring study on a particular water body, use the same instrument for all the monitoring at a site, if possible. Data quality objectives include collecting data that is representative of the waterbody being sampled, comparable to other data, and complete enough to fulfill the goals of the monitoring program. Proper training, oversight and coordination is an on-going basic service of the program to ensure reliable, quality data is being generated that can be used for resource management and awareness/educational purposes.

River Watch monitoring is generally exploratory and focuses on evaluating baseline ambient water and biological quality parameters of surface waters in the Red River Basin. The data quality objectives will be targeted as such. The data generated from the River Watch program will primarily be treated as "screening" level data—not only to identify areas of concern but also to help identify sites with good water quality that may serve as reference condition sites. When River Watch participants engage in monitoring and research partnerships, this QAPP will be reviewed and amended to suit the particular monitoring needs of the project and partners with additional equipment, training, and assistance provided

as per project needs. FDR/NRE project monitoring will be performed according to Watershed District's Project Team Project Monitoring Plans and at locations specified by the project team.

The **representativeness** of the data will be a function of the sampling locations selected and the number of samples collected representing a variety of flow regimes of a waterway. One of the factors in designing the monitoring program is to select sites that represent different and distinct reaches of rivers throughout a watershed, exhibiting variations in land use, slope, soil types, vegetative cover, stream modification, and other factors that may impact water quality. Monthly sampling over a number of years will increase the likelihood that sampling will occur over a representative range of flow conditions.

Another way to increase the representativeness of sampling is to sample streams at the point of average flow in the section of the river where the most of the flow is occurring (thalweg). Samples and field data should be collected from a depth that is 3/5 of the depth down from the surface at the deepest point in the river. Integrated sampling can also be used if sufficient time and necessary equipment is available. Integrated stream samplers collect more water at higher flow velocities and vice versa in order to collect a sample that proportionally represents the water column along its entire depth. For macroinvertebrate sampling, representativeness can be optimized by avoiding reaches influenced by bridges or culverts and by sampling several different habitat types proportionally.

In order to ensure **comparability** of data, samples should all be collected using the same methods. Documents such as this QAPP and Standard Operating Procedures documents serve as standard guides that can be used by all monitoring groups for all monitoring that is conducted. This will ensure that data is not only comparable from sample to sample, from volunteer monitor to volunteer monitor, and from River Watch team to River Watch team, but also comparable to data collected by resource managers using the same procedures. Red River Basin River Watch participants will use the Standard Operating Procedures-Revision 6, October 23, 2003 developed by the Red Lake Watershed District (hereafter referred to as RLWD SOP) for field sampling (available at http://www.redlakewatershed.org/default.html and http://www.ndsu.nodak.edu/tricollege/watershed/riverwatch/download.htm). A Volunteer Manual that presents a variation of the RLWD SOP that is more specific to operations of the standard River Watch program in the Red River Basin was developed by River Keepers through an EPA grant (September 2003)—hereafter referred to as RK-VM. It can be downloaded from http://www.ndsu.nodak.edu/tricollege/watershed/riverwatch/download.htm). Both documents utilize procedures based on EPA/MPCA guidelines and standard methods for water quality collection, assessment, and analysis. With thorough training and consistent use of the methods listed in these documents, data collected by River Watch participants will be comparable to data collected by any other agency or volunteer monitoring group using these methods.

Precision is a measure of mutual agreement among individual measurements, usually under demonstrated similar conditions. River Watch participants will collect one duplicate set of field measurements on each sample run. Precision will be calculated as the relative percent difference (RPD) between the original and duplicate sample. A 10% RPD will be used as the acceptance threshold for this project. The RPD is calculated by dividing the difference between two duplicate samples by their mean. Data for all variables will be compared with historic data, where available, to determine how well they agree with previous analytic techniques and results.

Accuracy is the degree of agreement between an observed or measured value and the true or expected value of the measured quality. Many kinds of error, including unintentional bias affect the inherent accuracy of data. Unfortunately, the true population values are rarely known. This is especially true when working with natural biological communities. Therefore, the best that can be done is to strive for repeatability of measurements and avoid bias by assuring consistency in adherence to calibration and

sampling procedures, sample processing, and data management. The accuracy values shown in Table 1 below relate to performance specifications as reported by the equipment manufacturer.

Completeness is defined as the percentage of measurements made that are judged to be valid according to specific criteria and entered into the data management system. To optimize completeness, every effort is made to obtain all sample measurements. Errors in equipment calibration, misuse of equipment, improper sampling techniques, and mistakes made in recording of sample results can all result in loss of valid sample results, which will reduce the ability to perform analysis, integrate results, and prepare reports. Percent completeness (%C) for measurement parameters is defined as: $%C = (v/T \times 100)$, —where v = the number of measurements judged valid, and T = the total number of possible measurements to be recorded.

Although there are no anticipated legal issues or requirements at stake concerning results of the River Watch monitoring program, the data collected will be used to establish baseline water quality conditions and problem screening for waterways in the Red River Basin. The variables identified in the project description will be consistently sampled on an on-going basis. Completeness of this data set is expected to range from 90%-100%. Each River Watch group should choose an appropriate number of sites so that each site can be monitored on each sampling date whenever possible. In order to fulfill statistical criteria, measurements will be taken at 100% of the sites unless conditions (i.e. bad weather, impassable roads, no flow, etc.) prevent sampling.

Table 1 provides a summary of data quality objectives for this project. Values for water temperature, pH, dissolved oxygen, and conductivity represent specifications for the YSI sensors used in the YSI 600QS sonde. Similar specifications are available for the HydroLab and other manufacturer's equipment. Turbidity values correspond to specifications of the Hach 2100P turbidimeter. Air temperature values correspond to field pocket thermometers normally used in the program. Transparency values correspond to use of standard 60 and 120 cm transparency tubes.

Matrix	Parameter	Precision	Measurement	Accuracy*	Resolution*
			Range*	-	
Air	Temperature	10%	-5 to 50°C		0.5°C
Water	Temperature	10%	-5 to 45°C	+/- 0.15°C	0.01°C
Water	pН	10%	0-14 units	+/- 0.2 units	0.01 units
Water	Dissolved	10%		+/- 2% of the	
	Oxygen, mg/l		0 to 50 mg/l	reading	0.01 mg/l
Water	Dissolved	10%	0 to 500% air	+/- 2% of the	0.1 % air
	Oxygen, % sat.		saturation	reading	saturation
Water	Conductivity	10%	0-100 mS/cm	+/- 0.5% of	Range
				reading	dependent
Water	Turbidity	10%	0-1000 NTU	+/- 2% of	0.01 on lowest
				reading	range
Water	Transparency	10%	0-120+ cm	+/- 5% of	0.2 cm
				reading	

TABLE 1

Precision, Measurement Range, Accuracy, and Resolution for River Watch Parameters

*Measurement Range, Accuracy, and Resolution are shown as per instrument manufacturer's specifications.

A5. Training

The training of volunteer monitors and supervising staff is important for collecting accurate and reliable data and making this data available for analysis in a usable format. River Watch participants are trained in the skill areas of equipment maintenance, collecting samples, field analysis, and data management (recording, analysis, and reporting). Training sessions on field methods and analysis will be held on an annual basis for monitoring staff and volunteers prior to the beginning of each monitoring year and as needed for new start-up schools or if there is a large transition of team members during the year. Data management training is on-going with a special emphasis on analysis at the conclusion of the monitoring year as reports and displays are prepared.

RRBMAC lead staff Wayne Goeken and Bruce Paakh will be responsible for overall training coordination. Red River Watershed Management Board, Center for Watershed Education, Watershed District, SWCD, MPCA staff, or other resource experts will coordinate and conduct training in the necessary skill areas. Upon demonstrating proficiency in the topics covered, training session participants will receive certification to serve as proof that qualified individuals are collecting and managing project data. This will provide assurance of data quality to anyone utilizing River Watch data for resource assessments and planning.

A6. Documentation and Records

A downloadable version (with current version and date shown) of this QAPP will always be located at: <u>http://www.redlakewatershed.org/h2oquality.html</u>. It will also be found at <u>http://www.ndsu.nodak.edu/tricollege/watershed/riverwatch/download.htm</u> along with other downloadable instructions, forms, and links including:

- YSI MDS 650 Handheld Introduction—basic operational overview of the YSI 650
- Standard Operating Procedures for Water Quality Monitoring in the Red River Watershed—the basic SOP for Red River basin monitoring-October 24, 2003
- Red River Basin Water Quality Monitoring Volunteer Manual—River Keepers, Sept. 2003
- YSI calibration procedures—detailed step-by-step procedures for calibrating the YSI 650
- YSI calibration worksheet—form for recording calibration information
- Equipment Calibration log—Excel data entry template for tracking calibration information
- Hach 2100P calibration worksheet—Excel form for recording turbidity calibration checks
- Field data sheet-multiple sites—standard form for entry of field data from multiple sites
- Field data sheet-single site—optional form for entry of field data for single site
- °F to °C conversion chart—for use when thermometer is in °F and °C is needed
- River Watch Data Entry Format—Excel template for entering data from field data sheet
- Data Analysis—basic explanation of the general water quality variables being monitored
- MPCA Citizen Stream Monitoring Guide—guide to establishing a monitoring program
- MN DNR Adopt-A-River Guide—guide to becoming involved in river clean-ups
- References/Resources/Contact Info/Suppliers/Web sites

Thorough documentation of all calibration, equipment maintenance, field sampling and handling activities is necessary for proper field analysis, data reduction, and ultimately for the interpretation of study results. For each regular River Watch field sampling event that occurs, a field data sheet must be completed on-site at the time sampling occurs. Documentation includes recording of measurements taken

Red River Basin River Watch Quality Assurance Project Plan

in the field, results from the meters used, and any observations that River Watch participants notice at the site which may have an influence on water quality results including recording of any deviations from prescribed sampling procedures.

River Watch participants will maintain a hard copy (original or copy) of results from each sample outing with their records and provide a copy or the original to the local natural resource agency serving as their monitoring partner. The River Watch team will also enter their data into an Excel electronic spreadsheet that is to be shared with their local monitoring partner. Data will receive final review and verification by the participating schools, RRWMB Monitoring staff, and local cooperators at the end of the sampling season, after which it will be forwarded to the MPCA for inclusion in the STORET database. Data will also be maintained on the RRBDIN website, http://www.rrbdin.org/. Calibration and equipment maintenance records will also be reviewed at the end of each sampling season by the lead quality control coordinators with the MPCA, RRWMB, CWE, and/or other evolving lead partners to verify that all equipment was in proper working order.

B. MEASUREMENT/DATA ACQUISTION

B1. Sampling Process Design

The goal of meeting watershed district data needs is one reason why the River Watch program places a strong emphasis on data quality and the collection of scientifically sound data. Sampling occurs monthly during open water months of April/May through Oct./Nov. River Watch field measurements to be collected will minimally include dissolved oxygen, pH, conductivity, water temperature, turbidity, transparency (transparency tube or Secchi disk readings), and stage. These variables will provide a general understanding of baseline water quality conditions throughout the Red River Basin.

Samples will be collected at 60% of the depth below the surface at the deepest section of the stream at each sampling site to obtain a representative sample. Water depth and 60% of the water depth will be calculated using measurements performed with a weighted tape measure. Site photos and general observations will also be recorded to document changing conditions throughout the sampling season. Field measurements will be taken at all sites following the RLWD SOP as cited earlier. Monitoring will occur monthly during ice-free conditions except where high water precludes sampling due to safety considerations.

The number of sites sampled per school primarily depends on proximity of sites to the school, safe access, and school scheduling flexibility. Local SWCD and Watershed District personnel take the lead in selecting sites that contribute to a better understanding of a diversity of watershed conditions, compliment existing monitoring efforts or address FDR/NRE project monitoring needs. The school River Watch team, MN DNR, and MPCA also provide input to the site selection process. Rationale for selecting other sampling sites will be documented as other monitoring programs and FDR/NRE projects are developed. Flow data will be collected via web-based access from the USGS gauging stations where available. Stage levels will be recorded at sites without USGS flow gauges. Rating curves to estimate flow will be developed by watershed district staff as their schedules and budgets allow. A complete list of current sites are included in Appendix A. The sites have been entered into the STORET data base where complete site descriptions can be found.

B2. Sampling Method

(Note: references to specific equipment is not an endorsement of a particular manufacturer, equipment from other manufacturers may be used that provide equivalent results.) Water quality samples will be collected using a Kemmerer or Van Dorn sampler if water is not wadeable. The sampler will be rinsed three times with the given source water before samples are taken. When water is wadeable, samples will be hand dipped by wading into the stream from a point downstream of the sampling location so as not to disturb the sampling area. If measurements are taken from a pool situation at a site when there is no discernible flow, field notes should clearly indicate this and these results should not be used in statistical analysis of the site's condition.

Field measurements including air temperature, water temperature, depth, dissolved oxygen, conductivity, pH, and turbidity will be measured at each sampling location. Air temperature will be measured by use of a pocket thermometer. Turbidity will be measured via a Hach 2100P turbidimeter. A transparency tube will be used for transparency readings. A YSI 600 QS Sonde and 650 Handheld will be used for measuring water temperature, conductivity, dissolved oxygen, and pH. Field measurements will be recorded on field data sheets and placed in the permanent site file maintained by the sampling entity as well as entered into an Excel data file for sharing with cooperators. Global positioning system (GPS) readings will not be taken at sampling locations until signals from at least four satellites are received.

B3. Sample Handling and Custody

All standard River Watch monitoring is field based thus no sample handling procedures are included for laboratory processing. In the event River Watch participants do collect samples for delivery to a lab, they are to refer to the procedures described in the RLWD SOP. As for samples collected for field analysis of turbidity and transparency, care must be taken to ensure that the sample has not been allowed to settle before drawing off a representative sample for analysis. Gently agitating the sample prior to filling the sample vial or transparency tube to ensure a thorough mixing will yield accurate results.

B4. Analytical Methods

Methods for field measurement of air temperature and transparency will follow the RLWD SOP. Methods for measurement of water temperature, conductivity, dissolved oxygen, and pH will follow the procedures defined in the YSI QS 600 sonde and 650 handheld Operations Manual while turbidity measurement methods will follow procedures defined in the Hach 2100P Turbidimeter Manual.

B5. Quality Control

River Watch participants will collect one duplicate set of field measurements on each sample run. This will consist of collecting a regular set of data for all variables being monitored at a given site followed by collection of a second set of data at the same site immediately following conclusion of the first sample. This will be used to determine whether the sampling procedures are being consistently applied and whether the instruments being used are producing consistent results.

A relative percent difference (RPD) between the original and duplicate sample will be calculated by dividing the difference between two duplicate samples by their mean. A 10% RPD will be used as the acceptance threshold for this project. If QC samples reveal a sampling or analytical problem, field personnel will troubleshoot the problem and attempt to identify the source of error or cause of failure. Upon working out a solution, personnel will take necessary steps to avoid similar problems in future sampling events. Data may need to be flagged and qualified depending upon the nature and extent of the problem. RRWMB and MPCA staff will assist in the review of QC data and implementation of corrective measures if deemed necessary.

B6. Instrument/Equipment Testing, Inspection, and Maintenance

All equipment will be inspected and tested each day prior to use in the field. All field equipment will be maintained according to manufacturer's specifications. Membranes on DO probes will be inspected routinely for air bubbles or tears. Steps will be taken to fix any problems that are noted. If any equipment is beyond repair, replacement equipment will be used. Expired buffer solutions and calibration standards will be replaced with new solutions prior to the initiation of calibration procedures. Batteries on all meters will be replaced when meters show power-related problems. Spare batteries for all meters are to be available if needed. If a backup meter is needed, arrangements will need to be made with other partners in the Red River Basin Monitoring Network to cover sampling needs until repair or replacement can be achieved. All maintenance procedures will be documented in the meter maintenance logs or the field notebook.

B7. Instrument Calibration and Frequency

Instruments used in this project are those commonly used in most water quality studies and are widely available. Calibration of the instruments will follow manufacturer instructions, and the calibration results will be recorded on calibration log sheets and entered into an Excel calibration spreadsheet that will be reviewed by RRWMB and MPCA staff immediately if problems are detected by River Watch Advisors or minimally at the end of each sampling season. Calibration of the YSI QS 600 sonde is to be done on each sample outing for dissolved oxygen; every two weeks for pH; and monthly for conductivity. The DO membrane is to be changed at least every 30 days. The Hach 2100P Turbidimeter is to be calibrated quarterly with formazin solution at which time secondary Gelex standards are assigned calibration values. The secondary Gelex standards are then checked on each sample outing between the quarterly calibration to ensure the meter has maintained calibration. Calibration procedures for the YSI sonde, and Hach 2100P Turbidimeter, and calibration log sheets and spreadsheet can all be found at: http://www.ndsu.nodak.edu/tricollege/watershed/riverwatch/download.htm.

Transparency measurements using a transparency tube will be collected following MPCA's Citizen Stream-Monitoring Program protocols which are found in the RLWD SOP and RK-VM.

B8. Inspection/Acceptance of Supplies and Consumables

Careful and thorough planning is necessary to ensure the efficient completion of the field sample collection tasks. A general checklist of field equipment and supplies is included in the RLWD SOP and the RK-VM. It is the responsibility of the River Watch Advisor to gather and inspect the necessary sampling gear prior to each sampling trip.

Equipment, reagents, and field sampling supplies can be obtained from a variety of vendors. Care must be taken to closely observe the expiration dates of reagents used for calibration and not use expired reagents. Some reagents such as conductivity standards also must be used within a certain time period from when they are opened, thus manufacturer's specifications must be followed for proper use of these standards. For technical assistance, servicing, and replacement parts associated with the meters currently used in the River Watch program, the manufacturers can be contacted directly. The Hach Company can be reached at 1-800-227-4224. YSI Inc. can be reached at 1-937-767-7241.

B9. Data Acquisition Requirements (Non-direct Measurements)

To assist in analysis and decision-making, outside sources of data will be accessed to obtain historical or supplemental information. This may include, but not be limited to information regarding land use, precipitation, flow volume, soil characteristics, ecoregion values, and water quality designated use standards. Such data will be obtained from sources that have scientifically sound background and documented quality control protocols. Such sources may include:

- Watershed Districts and Soil and Water Conservation Districts
- RRBMAC members
- MPCA Environmental Data Access website (access to STORET data)
- MPCA Citizen Lake Monitoring Program
- DNR Biological surveys
- U.S. Geological Survey

B10. Data Management

The monitoring team (generally the school) keeps a hardcopy of the original field data sheet with their records and makes a copy that is provided to their local natural resource agency partner. The monitoring team also transfers the information to an Excel spreadsheet that is shared electronically with the RRWMB Monitoring staff, the local watershed district, local soil and water conservation district cooperators, and/or other parties identified as having an interest in the data. Data will receive final review and verification by the participating schools, RRWMB Monitoring staff, and local cooperators at the end of the sampling season, after which it will be forwarded to the MPCA for inclusion in the STORET database. RRWMB will maintain a master data set of all results.

Future plans involve creating an Access database and posting the data on the RRBDIN website, <u>http://www.rrbdin.org/</u> to allow for wider access. The web sites will include interactive maps of the sampling sites, background information, monitoring data, and a report card on site conditions. Some schools also maintain their own web pages that include their data along with photos of the sites and their sampling teams in action.

C. – ASSESSMENT AND OVERSIGHT

C1. Assessment and Response Actions

River Watch Advisors, generally the teachers in the participating schools, with the assistance of their students will be responsible for all field activities. If any problems arise, the RW Advisors are to contact RRWMB and/or local cooperators immediately as to the nature of the problem and any corrective actions taken to rectify the problem in order to obtain accurate and useful data. RRWMB and/or local cooperators will verify if proper corrective actions were taken or further assist in troubleshooting the situation and implementing appropriate actions. The RW Advisor will document as part of the field data records the situation and corrective actions taken.

RW Advisors and team members will also be responsible for forwarding of data to RRWMB and local cooperators for inspection. After proofing the data, RRWMB staff will be responsible for transferring the data to the STORET system and to the RRBDIN website. RRWMB staff will work with the River Watch teams and local cooperators in reviewing the data, assessing conditions, and reporting findings. RRWMB WQ and RRBI Center for Watershed Education staff will oversee and assess field sampling and data collection activities at each of the River Watch participants sample runs a minimum of once a year to ensure that the procedures specified in the QAPP and SOP are being followed.

C2. <u>Reports</u>

An annual report of the findings of this project will be prepared by RRWMB WQ staff with assistance from the RRBMAC and distributed to the affected watershed district project teams, the Flood Damage Reduction Work Group and the Red River Watershed Management Board. This will include a section describing the results of data quality assessments, any quality assurance problems, and recommended solutions.

D – DATA VALIDATION AND USABILITY

D1. Data Review, Verification, and Validation

All data entered into the Excel data templates will be double-checked with the original data on the field data sheets by the River Watch school teams. Data quality will be assessed by comparing entered data to original data with any errors being corrected as they are found. An assessment of field duplicates will also be performed by the RW school teams with data found outside of the QC limits identified in B5 flagged for further review. RRWMB and MPCA WQ staff will perform a final data review and validation with outliers and inconsistencies and decisions made regarding their use documented.

D2. Data Usability

Field data and field QC sample sets will be reviewed by RRWMB and MPCA WQ staff to determine if data meet the QAPP objectives. Data that does not meet the QC requirements identified in B5 may be flagged or rejected. Decisions to reject or qualify data will be made by RRWMB and MPCA WQ staff.

D3. Reconciliation with Data Quality Objectives

Calculations and determinations for precision, completeness, and accuracy will be made as soon as possible after each sampling event and corrective action will be implemented if needed. This will represent the final determination of whether the data collected are of the correct type, quantity, and quality to support their intended use for this project. Any problems in meeting the performance criteria (or uncertainties and limitations in use of the data) will be discussed with the RW sampling team, and will be reconciled, if possible. If data quality indicators do not meet the project's specifications, data may be discarded and resampling may occur. The cause of failure will be reassessed and improved. If the problem is found to be sampling team error, team members will be retrained. Any limitations on data use will be detailed in any project-related reports and other documentation, as needed.

Appendix A.

River Watch Sample Sites by Watershed, Water Body, County, and School

<u>Site I.D.</u>	Watershed	Water Body	<u>County</u>	School
Red210By	Bois de Sioux	Red R	Wilkin	Breckenridge
Tyler	Bois de Sioux	Bois de Sioux R	Wilkin	Breckenridge
BdS26	Bois de Sioux	Bois de Sioux R	Wilkin	Campbell
BdS28	Bois de Sioux	Rabbit R.	Wilkin	Campbell
BdS30	Bois de Sioux	Judicial Ditch 12	Traverse	Campbell
BdS51	Bois de Sioux	Judicial Ditch 2	Wilkin	Campbell
BdS8	Bois de Sioux	Judicial Ditch 11	Wilkin	Campbell
BdS27	Bois de Sioux	Rabbit R.	Wilkin	Campbell
BdS49	Bois de Sioux	Rabbit R.	Wilkin	Campbell
BdS 13	Bois de Sioux	12 Mile CrE.Fk	Stevens	Graceville
BdS 15	Bois de Sioux	12 Mile CrW.Fk	Traverse	Graceville
BdS 18	Bois de Sioux	12 Mile CrW.Br-E.F	k Traverse	Graceville
BdS 19	Bois de Sioux	12 Mile CrW.Br	Traverse	Graceville
BdS20	Bois de Sioux	12 Mile CrW.Br	Big Stone	Graceville
WToqCR52	Bois de Sioux	Rothwell Outlet	Big Stone	Graceville
BdS 01	Bois de Sioux	Mustinka R	Grant	Herman
BdS 02	Bois de Sioux	Mustinka R	Grant	Herman
BdS 11	Bois de Sioux	Grant CD 8	Grant	Herman
BdS 23	Bois de Sioux	5 Mile Cr	Traverse	Herman
BdS 33	Bois de Sioux	Mustinka R	Grant	Herman
BdS 16	Bois de Sioux	12 Mile Cr-E.Br	Traverse	Wheaton
BdS 34	Bois de Sioux	12 Mile Cr-W.Br	Traverse	Wheaton
BdS 5	Bois de Sioux	12 Mile Cr-MS	Traverse	Wheaton
BdS LkTr	Bois de Sioux	Bois de Sioux R	Traverse	Wheaton
BdS W.Rock	Bois de Sioux	Bois de Sioux R	Traverse	Wheaton
BdSWRockN	Bois de Sioux	Bois de Sioux R	Traverse	Wheaton
BdS 32	Bois de Sioux	Mustinka R	Traverse	Wheaton
BufDown	Buffalo-Red	Buffalo R SB	Wilkin	Barnesville
BufTrout	Buffalo-Red	Wilkin CD 40	Wilkin	Barnesville
BufUp	Buffalo-Red	Buffalo R SB	Wilkin	Barnesville
DeerH E	Buffalo-Red	Deer Horn Cr.	Wilkin	Barnesville
DeerH W	Buffalo-Red	Deer Horn Cr.	Wilkin	Barnesville
Whisky E	Buffalo-Red	Whisky Cr.	Clay	Barnesville
Whisky W	Buffalo-Red	Whisky Cr.	Clay	Barnesville
Brushvale	Buffalo-Red	Red R	Wilkin	Breckenridge
BRD39	Buffalo-Red	BufRed Ditch 39	Clay	Hawley
BufMN9	Buffalo-Red	Buffalo R	Clay	Hawley
Cederberg	Buffalo-Red	Buffalo R	Clay	Hawley
Haw31	Buffalo-Red	Buffalo R	Clay	Hawley
HawMN32	Buffalo-Red	Buffalo R	Clay	Hawley
HawUS10	Buffalo-Red	Buffalo R	Clay	Hawley
ManJct	Buffalo-Red	Buffalo R	Clay	Hawley

<u>Site I.D.</u>	Watershed	Water Body	<u>County</u>	School
Muskoda	Buffalo-Red	Buffalo R	Clay	Hawley
M1	Middle R Snake	Middle R	Marshall	Newfolden
MCC 30	Middle R Snake	Middle R	Marshall	Newfolden
OM	Middle R Snake	Middle R	Marshall	Newfolden
MRA	Middle R Snake	Middle R	Marshall	Stephen
2nd Street	Middle R Snake	Snake R	Marshall	Warren
5th Street	Middle R Snake	Snake R	Marshall	Warren
AVO	Middle R Snake	Judicial Ditch 25	Marshall	Warren
RR	Middle R Snake	Snake R	Marshall	Warren
Foxhome	Otter Tail	Otter Tail R	Wilkin	Breckenridge
Orwell	Otter Tail	Otter Tail R	Otter Tail	Breckenridge
Everdale	Otter Tail	Otter Tail R	Wilkin	Breckenridge
Breck Lk	Otter Tail	Otter Tail R	Wilkin	Breckenridge
11th St.	Otter Tail	Otter Tail R	Wilkin	Breckenridge
CG #10	Red Lake	Clearwater R		Clearbrook-Gonvick
CG #20	Red Lake	Clearwater R		Clearbrook-Gonvick
CG #30	Red Lake	Clearwater R	Beltrami	Clearbrook-Gonvick
CG #40	Red Lake	Clearwater R		Clearbrook-Gonvick
CG #50	Red Lake	Clearwater R		Clearbrook-Gonvick
CG Dam	Red Lake	Clearwater R		Clearbrook-Gonvick
#75 Bypass	Red Lake	Red Lake R	Polk	Crookston
Burnham	Red Lake	Burnham Cr.	Polk	Crookston
Gentilly	Red Lake	Red Lake R	Polk	Crookston
Sampson	Red Lake	Red Lake R	Polk	Crookston
PC19	Red Lake	Grand Marais	Polk	East Gr Fks Pub
Sorlie	Red Lake	Red R	Polk	East Gr Fks Pub
Mallory	Red Lake	Red Lake R	Polk	East Gr Fks SH
Murray	Red Lake	Red Lake R	Polk	East Gr Fks SH
Point	Red Lake	Red R	Polk	East Gr Fks SH
BAD8	Red Lake	Badger Cr	Polk	Erskine
Oak15	Red Lake	Badger Cr	Polk	Erskine
WinPop	Red Lake	Poplar R	Polk	Erskine
BC 1	Red Lake	Burnham Cr.	Polk	Fisher
FGM1	Red Lake	Grand Marais	Polk	Fisher
FiRLR15	Red Lake	Red Lake R	Polk	Fisher
Keywest	Red Lake	PolkCD 126	Polk	Fisher
Pop10	Red Lake	Poplar R	Polk	Fosston
Pop20	Red Lake	Poplar R	Polk	Fosston
D 11	Red Lake	JD 11	Marshall	Grygla
Dike	Red Lake	Mud R	Beltrami	Grygla
MarCD20	Red Lake	Co. Ditch 20	Marshall	Grygla
Moose	Red Lake	Moose R	Beltrami	Grygla
OK #10	Red Lake	Clearwater R	Red Lake	OK
OK #20	Red Lake	Lost R	Red Lake	ОК
OK #30	Red Lake	Hill R.	Red Lake	ОК
PL #10	Red Lake	Clearwater R	Red Lake	PL
PL #20	Red Lake	Clearwater R	Red Lake	PL

<u>Site I.D.</u>	Watershed	Water Body	<u>County</u>	School
PL #30	Red Lake	Lost R	Red Lake	PL
PL #40	Red Lake	Hill R	Red Lake	PL
Battle	Red Lake	Battle Cr	Beltrami	Red Lake
Blackduck	Red Lake	Blackduck Cr	Beltrami	Red Lake
Mud	Red Lake	Mud Cr	Beltrami	Red Lake
Pike	Red Lake	Pike Cr	Beltrami	Red Lake
BL10	Red Lake	Black R	Red Lake	Red Lake Falls
Old RLR site	Red Lake	Red Lake R	Red Lake	Red Lake Falls
RL 10	Red Lake	Red Lake R	Red Lake	Red Lake Falls
RLF10	Red Lake	Clearwater R	Red Lake	Red Lake Falls
RL20	Red Lake	Red Lake R	Red Lake	Red Lake Falls
7MC	Roseau	Roseau E Br	Roseau	Roseau
C. St.	Roseau	Roseau MS	Roseau	Roseau
Hay	Roseau	Hay Cr-Ros	Roseau	Roseau
Hay 2	Roseau	Hay Cr-Ros	Roseau	Roseau
Mal	Roseau	Roseau SB	Roseau	Roseau
Ross	Roseau	Roseau MS	Roseau	Roseau
RR 310	Roseau	Roseau MS	Roseau	Roseau
S. Cr.	Roseau	Sprague Cr	Roseau	Roseau
Belt10	Sand Hill	Sand Hill R	Polk	Climax
CL 01	Sand Hill	Sand Hill R	Polk	Climax
CL10	Sand Hill	Sand Hill R	Polk	Climax
CL15	Sand Hill	Sand Hill R	Polk	Climax
CL20	Sand Hill	Sand Hill R	Polk	Climax
RR10	Sand Hill	Red R	Polk	Climax
CD16	Sand Hill	Polk CD 16	Polk	Erskine
WEM10	Sand Hill	Sand Hill R	Polk	Erskine
WEM20	Sand Hill	Sand Hill R	Polk	Erskine
FB10	Sand Hill	Sand Hill R	Polk	Fertile
FB15	Sand Hill	Sand Hill R	Polk	Fertile
FB20	Sand Hill	Sand Hill R	Polk	Fertile
Lewis	Sand Hill	Sand Hill R	Polk	Fertile
Rindal	Sand Hill	Sand Hill R	Polk	Fertile
Fos10	Sand Hill	Sand Hill R	Polk	Fosston
Fos20	Sand Hill	Sand Hill R	Polk	Fosston
Fos5	Sand Hill	Sand Hill R	Polk	Fosston
Tam1	Tamarac	Tamarac R.	Marshall	Karlstad
Tam2	Tamarac	Tamarac R.	Marshall	Karlstad
6MC	Tamarac	Tamarac R.	Marshall	Stephen
GC	Tamarac	Tamarac R.	Marshall	Stephen
Hwy 220	Tamarac	Tamarac R.	Marshall	Stephen
Hwy 34	Tamarac	Tamarac R.	Marshall	Stephen
Hwy 75	Tamarac	Tamarac R.	Marshall	Stephen
T01	Two River Joe	Two River MS	Kittson	Hallock
T05	Two River Joe	Two River MS	Kittson	Hallock
T08	Two River Joe	Two River SBr	Kittson	Hallock
T10	Two River Joe	Two River MidBr	Kittson	Hallock

<u>Site I.D.</u>	Watershed	Water Body	<u>County</u>	School
K Bridge	Two River Joe	Two River SB	Kittson	Karlstad
Klondike	Two River Joe	Lateral #1	Kittson	Karlstad
Pelan	Two River Joe	Two River SB	Roseau	Karlstad
T04	Two River Joe	Two R NBr	Kittson	Lancaster
T02	Two River Joe	Two R NBr	Kittson	Lancaster
T02A	Two River Joe	Twp R NBr	Kittson	Lancaster
Т03	Two River Joe	Two R NBr	Kittson	Lancaster
BR	Warroad	Warroad R WB	Roseau	Warroad
DCN	Wild Rice	Dalen Coulee	Norman	Ada
FD	Wild Rice	Felton Ditch	Norman	Ada
WRSB	Wild Rice	Wild Rice SB	Norman	Ada
WRMSNor	Wild Rice	Wild Rice MS	Norman	Hendrum
MAR	Wild Rice	Marsh Cr-Mahnomen	Norman	Mahnomen
SCM	Wild Rice	Spring Cr-Ma	Norman	Mahnomen
WER	Wild Rice	White Earth R	Mahnomen	Mahnomen
WRMSM	Wild Rice	Wild Rice MS	Mahnomen	Mahnomen
CC	Wild Rice	Coon Cr	Norman	Twin Valley
MASH	Wild Rice	Mashaug Cr	Norman	Twin Valley
MOC	Wild Rice	Moccassin Cr	Norman	Twin Valley
FC Ulen	Wild Rice	Felton Cr	Clay	Ulen
St Cr	Wild Rice	Stiner Cr	Clay	Ulen
WRSB42	Wild Rice	Wild Rice SB	Clay	Ulen
WRSBUU	Wild Rice	Wild Rice SB	Clay	Ulen
WRSB27	Wild Rice	Wild Rice SB	Clay	Ulen
WRSBU	Wild Rice	Wild Rice SB	Clay	Ulen

Appendix A1. (map)

Schools/Communities Involved in River Watch-2004

Appendix A2. (map) River Watch Sampling Site Distribution in Red River Basin - 2004